15^2+18^2=x^2

Simple and best practice solution for 15^2+18^2=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15^2+18^2=x^2 equation:



15^2+18^2=x^2
We move all terms to the left:
15^2+18^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+549=0
a = -1; b = 0; c = +549;
Δ = b2-4ac
Δ = 02-4·(-1)·549
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{61}}{2*-1}=\frac{0-6\sqrt{61}}{-2} =-\frac{6\sqrt{61}}{-2} =-\frac{3\sqrt{61}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{61}}{2*-1}=\frac{0+6\sqrt{61}}{-2} =\frac{6\sqrt{61}}{-2} =\frac{3\sqrt{61}}{-1} $

See similar equations:

| 2(2a-1)=-22 | | -14m+7m+1=-7m+1 | | -8(7-x)=4/5(x+20) | | 5=2y-5* | | 5s+16=76 | | 5b-8=10+2b | | 5(3x+3)=35+5x | | -5x^2-8=-13 | | F(x)=1/8x+2 | | 3(a-4)=-3 | | 3/5p=1/5(40-p)=0 | | V=40n-8 | | 2(a+4)=38 | | 3(4g+6)=2 | | x+30+75+40=180 | | 6.8x-13.2=20.8 | | 33=-7w+2(w+4) | | 3(4g+6)=2( | | -8=-4-r/5 | | -8=7+5w | | 9x^2+9=72 | | 8x+4x+12=180 | | -17=3-5u | | 3x−6+2=8−x+4 | | 5q+9=94 | | 4(t−20)=-16 | | -2(x+5)+18=13-3x | | -7+9x=-34 | | 17=3-5u | | 12x−x^2−35=0 | | 4x+6+5x=24 | | -8n+6=-18 |

Equations solver categories